Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Immunol ; 13: 947724, 2022.
Article in English | MEDLINE | ID: covidwho-2141980

ABSTRACT

Background: Asthma patients potentially have impaired adaptive immunity to virus infection. The levels of SARS-CoV-2-specific adaptive immunity between COVID-19 survivors with and without asthma are presently unclear. Methods: COVID-19 survivors (patients with asthma n=11, with allergies n=8, and COVID-19 only n=17) and non-COVID-19 individuals (asthmatic patients n=10 and healthy controls n=9) were included. The COVID-19 patients were followed up at about 8 months and 16 months after discharge. The clinical characteristics, lymphocyte subsets, memory T cells, and humoral immunity including SARS-CoV-2 specific antibodies, SARS-CoV-2 pseudotyped virus neutralization assay, and memory B cells were analyzed in these subjects. Results: The strength of virus-specific T cell response in COVID-19 survivors was positively correlated with the percentage of blood eosinophils and Treg cells (r=0.4007, p=0.0188; and r=0.4435, p=0.0086 respectively) at 8-month follow-up. There were no statistical differences in the levels of SARS-CoV-2-specific T cell response between the COVID-19 survivors with, and without, asthma. Compared to those without asthma, the COVID-19 with asthma survivors had higher levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) at the 8-month follow-up (p<0.05). Moreover, the level of NAbs in COVID-19 survivors was positively correlated with the percentage of Treg and cTfh2 cells (r=0.5037, p=0.002; and r=0.4846, p=0.0141), and negatively correlated with the percentage of Th1 and Th17 cells (r=-0.5701, p=0.0003; and r=-0.3656, p=0.0308), the ratio of Th1/Th2, Th17/Treg, and cTfh1/cTfh2 cell (r=-0.5356, r=-0.5947, r=-0.4485; all p<0.05). The decay rate of NAbs in the COVID-19 survivors with asthma was not significantly different from that of those without asthma at 16-month follow-up. Conclusion: The level of SARS-CoV-2-specific NAbs in COVID-19 survivors with asthma was higher than that of those without asthma at 8-month follow-up. The SARS-CoV-2-specific T cell immunity was associated with blood eosinophils and Treg percentages. The SARS-CoV-2-specific humoral immunity was closely associated with cTfh2/cTfh1 imbalance and Treg/Th17 ratio. According to the findings, asthmatic patients in COVID-19 convalescent period may benefit from an enhanced specific humoral immunity, which associates with skewed Th2/Th1 and Treg/Th17 immune.


Subject(s)
Asthma , COVID-19 , Adaptive Immunity , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2 , Survivors
2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1970343

ABSTRACT

Background Asthma patients potentially have impaired adaptive immunity to virus infection. The levels of SARS-CoV-2-specific adaptive immunity between COVID-19 survivors with and without asthma are presently unclear. Methods COVID-19 survivors (patients with asthma n=11, with allergies n=8, and COVID-19 only n=17) and non-COVID-19 individuals (asthmatic patients n=10 and healthy controls n=9) were included. The COVID-19 patients were followed up at about 8 months and 16 months after discharge. The clinical characteristics, lymphocyte subsets, memory T cells, and humoral immunity including SARS-CoV-2 specific antibodies, SARS-CoV-2 pseudotyped virus neutralization assay, and memory B cells were analyzed in these subjects. Results The strength of virus-specific T cell response in COVID-19 survivors was positively correlated with the percentage of blood eosinophils and Treg cells (r=0.4007, p=0.0188;and r=0.4435, p=0.0086 respectively) at 8-month follow-up. There were no statistical differences in the levels of SARS-CoV-2-specific T cell response between the COVID-19 survivors with, and without, asthma. Compared to those without asthma, the COVID-19 with asthma survivors had higher levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) at the 8-month follow-up (p<0.05). Moreover, the level of NAbs in COVID-19 survivors was positively correlated with the percentage of Treg and cTfh2 cells (r=0.5037, p=0.002;and r=0.4846, p=0.0141), and negatively correlated with the percentage of Th1 and Th17 cells (r=-0.5701, p=0.0003;and r=-0.3656, p=0.0308), the ratio of Th1/Th2, Th17/Treg, and cTfh1/cTfh2 cell (r=-0.5356, r=-0.5947, r=-0.4485;all p<0.05). The decay rate of NAbs in the COVID-19 survivors with asthma was not significantly different from that of those without asthma at 16-month follow-up. Conclusion The level of SARS-CoV-2-specific NAbs in COVID-19 survivors with asthma was higher than that of those without asthma at 8-month follow-up. The SARS-CoV-2-specific T cell immunity was associated with blood eosinophils and Treg percentages. The SARS-CoV-2-specific humoral immunity was closely associated with cTfh2/cTfh1 imbalance and Treg/Th17 ratio. According to the findings, asthmatic patients in COVID-19 convalescent period may benefit from an enhanced specific humoral immunity, which associates with skewed Th2/Th1 and Treg/Th17 immune.

3.
Viruses ; 14(1)2022 01 02.
Article in English | MEDLINE | ID: covidwho-1614002

ABSTRACT

The rate of decline in the levels of neutralizing antibodies (NAbs) greatly varies among patients who recover from Coronavirus disease 2019 (COVID-19). However, little is known about factors associated with this phenomenon. The objective of this study is to investigate early factors at admission that can influence long-term NAb levels in patients who recovered from COVID-19. A total of 306 individuals who recovered from COVID-19 at the Tongji Hospital, Wuhan, China, were included in this study. The patients were classified into two groups with high (NAbhigh, n = 153) and low (NAblow, n = 153) levels of NAb, respectively based on the median NAb levels six months after discharge. The majority (300/306, 98.0%) of the COVID-19 convalescents had detected NAbs. The median NAb concentration was 63.1 (34.7, 108.9) AU/mL. Compared with the NAblow group, a larger proportion of the NAbhigh group received corticosteroids (38.8% vs. 22.4%, p = 0.002) and IVIG therapy (26.5% vs. 16.3%, p = 0.033), and presented with diabetes comorbidity (25.2% vs. 12.2%, p = 0.004); high blood urea (median (IQR): 4.8 (3.7, 6.1) vs. 3.9 (3.5, 5.4) mmol/L; p = 0.017); CRP (31.6 (4.0, 93.7) vs. 16.3 (2.7, 51.4) mg/L; p = 0.027); PCT (0.08 (0.05, 0.17) vs. 0.05 (0.03, 0.09) ng/mL; p = 0.001); SF (838.5 (378.2, 1533.4) vs. 478.5 (222.0, 1133.4) µg/L; p = 0.035); and fibrinogen (5.1 (3.8, 6.4) vs. 4.5 (3.5, 5.7) g/L; p = 0.014) levels, but low SpO2 levels (96.0 (92.0, 98.0) vs. 97.0 (94.0, 98.0)%; p = 0.009). The predictive model based on Gaussian mixture models, displayed an average accuracy of 0.7117 in one of the 8191 formulas, and ROC analysis showed an AUC value of 0.715 (0.657-0.772), and specificity and sensitivity were 72.5% and 67.3%, respectively. In conclusion, we found that several factors at admission can contribute to the high level of NAbs in patients after discharge, and constructed a predictive model for long-term NAb levels, which can provide guidance for clinical treatment and monitoring.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19/immunology , Convalescence , SARS-CoV-2/immunology , Aged , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/therapy , China , Female , Hospitalization , Humans , Logistic Models , Male , Middle Aged , ROC Curve
4.
Ther Adv Chronic Dis ; 12: 20406223211041924, 2021.
Article in English | MEDLINE | ID: covidwho-1398819

ABSTRACT

BACKGROUND: A novel coronavirus disease 2019 (COVID-19) has caused outbreaks worldwide, and the number of cases is rapidly increasing through human-to-human transmission. Because of the greater transmission capacity and possible subsequent multi-organ damage caused by the virus, it is crucial to understand precisely and manage COVID-19 patients. However, the underlying differences in the clinical features of COVID-19 with and without comorbidities are not fully understood. AIM: The objective of this study was to identify the clinical features of COVID-19 patients with and without complications to guide treatment and predict the prognosis. METHOD: We collected the clinical characteristics of COVID-19 patients with and without different complications, including hypertension, cardiovascular disease and diabetes. Next, we performed a baseline comparison of each index and traced the dynamic changes in these factors during hospitalization to explore the potential associations. RESULT: A clinical index of differential expression was used for the regression to select top-ranking factors. The top-ranking clinical characteristics varied in each subgroup, such as indices of liver function, renal function and inflammatory markers. Among them, the indices of renal function were highly ranked in all subgroups and displayed significant differences during hospitalization. CONCLUSION: Organ functions of COVID-19 patients, particularly renal function, should be cautiously taken care of during management and might be a crucial factor for a poor prognosis of these patients with complications.

5.
Sci Rep ; 11(1): 13854, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1297314

ABSTRACT

To describe the long-term health outcomes of patients with COVID-19 and investigate the potential risk factors. Clinical data during hospitalization and at a mean (SD) day of 249 (15) days after discharge from 40 survivors with confirmed COVID-19 (including 25 severe cases) were collected and analyzed retrospectively. At follow-up, severe cases had higher incidences of persistent symptoms, DLCO impairment, and higher abnormal CT score as compared with mild cases. CT score at follow-up was positively correlated with age, LDH level, cumulative days of oxygen treatment, total dosage of glucocorticoids used, and CT peak score during hospitalization. DLCO% at follow-up was negatively correlated with cumulative days of oxygen treatment during hospitalization. DLCO/VA% at follow-up was positively correlated with BMI, and TNF-α level. Among the three groups categorized as survivors with normal DLCO, abnormal DLCO but normal DLCO/VA, and abnormal DLCO and DLCO/VA, survivors with abnormal DLCO and DLCO/VA had the lowest serum IL-2R, IL-8, and TNF-α level, while the survivors with abnormal DLCO but normal DLCO/VA had the highest levels of inflammatory cytokines during hospitalization. Altogether, COVID-19 had a greater long-term impact on the lung physiology of severe cases. The long-term radiological abnormality maybe relate to old age and the severity of COVID-19. Either absent or excess of inflammation during COVID-19 course would lead to the impairment of pulmonary diffusion function.


Subject(s)
COVID-19/epidemiology , Lung/virology , Respiration Disorders/virology , SARS-CoV-2/pathogenicity , Survivors , Adult , Aged , Follow-Up Studies , Humans , Lung/physiopathology , Male , Middle Aged , Respiration Disorders/physiopathology , Respiratory Physiological Phenomena , Retrospective Studies , Survivors/statistics & numerical data
6.
Int J Infect Dis ; 108: 483-486, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1253015

ABSTRACT

INTRODUCTION: A large number of COVID-19 patients are in recovery, and millions of people are vaccinated for COVID-19 globally. This calls for a rapid screening strategy of SARS-CoV-2 protective antibodies, generated in rehabilitated and vaccinated populations. METHODS: Serum samples collected over a follow-up period of six months from 306 COVID-19 cases discharged from Wuhan Tongji Hospital were analyzed. Anti-S Abs were detected by colloidal gold immunochromatographic assay (GICA), and neutralizing antibodies (nAbs) were detected by chemiluminescent microparticle immunoassay (CMIA). RESULTS: Most COVID-19 survivors tested positive for anti-S Abs (83.7%) and nAbs (98.0%) 6 months after being discharged from the hospital, and the levels of anti-S Abs in the blood were highly positively correlated with nAbs (r = 0.652, P < 0.0001). The positivity rate of nAbs for patients with anti-S Abs positive was 100%. CONCLUSIONS: There is a good agreement between anti-S Abs detected by GICA and nAbs detected by CMIA. It indicates that anti-S Abs detected by GICA may be used as a cheaper screening strategy for detectable SARS-CoV-2 nAbs in COVID-19 convalescent individuals.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , Gold Colloid , Humans , Immunoassay , SARS-CoV-2
7.
Clin Transl Immunology ; 10(2): e1251, 2021.
Article in English | MEDLINE | ID: covidwho-1084626

ABSTRACT

OBJECTIVES: We aimed to gain an understanding of the paradox of the immunity in COVID-19 patients with T cells showing both functional defects and hyperactivation and enhanced proliferation. METHODS: A total of 280 hospitalised patients with COVID-19 were evaluated for cytokine profiles and clinical features including viral shedding. A mouse model of acute infection by lymphocytic choriomeningitis virus (LCMV) was applied to dissect the relationship between immunological, virological and pathological features. The results from the mouse model were validated by published data set of single-cell RNA sequencing (scRNA-seq) of immune cells in bronchoalveolar lavage fluid (BALF) of COVID-19 patients. RESULTS: The levels of soluble CD25 (sCD25), IL-6, IL-8, IL-10 and TNF-α were higher in severe COVID-19 patients than non-severe cases, but only sCD25 was identified as an independent risk factor for disease severity by multivariable binary logistic regression analysis and showed a positive association with the duration of viral shedding. In agreement with the clinical observation, LCMV-infected mice with high levels of sCD25 demonstrated insufficient anti-viral response and delayed viral clearance. The elevation of sCD25 in mice was mainly contributed by the expansion of CD25+CD8+ T cells that also expressed the highest level of PD-1 with pro-inflammatory potential. The counterpart human CD25+PD-1+ T cells were expanded in BALF of COVID-19 patients with severe disease compared to those with modest disease. CONCLUSION: These results suggest that high levels of sCD25 in COVID-19 patients probably result from insufficient anti-viral immunity and indicate an expansion of pro-inflammatory T cells that contribute to disease severity.

8.
Virol Sin ; 35(6): 793-802, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-911957

ABSTRACT

COVID-19 patients can recover with a median SARS-CoV-2 clearance of 20 days post initial symptoms (PIS). However, we observed some COVID-19 patients with existing SARS-CoV-2 for more than 50 days PIS. This study aimed to investigate the cause of viral clearance delay and the infectivity in these patients. Demographic data and clinical characteristics of 22 long-term COVID-19 patients were collected. The median age of the studied cohort was 59.83 ± 12.94 years. All patients were clinically cured after long-term SARS-CoV-2 infection ranging from 53 to 112 days PIS. Peripheral lymphocytes counts were normal. The ratios of interferon gamma (IFN-γ)-secreting cells to total CD4+ and CD8+ cells were normal as 24.68% ± 9.60% and 66.41% ± 14.87% respectively. However, the number of IFN-γ-secreting NK cells diminished (58.03% ± 11.78%). All patients presented detectable IgG, which positively correlated with mild neutralizing activity (Mean value neutralisation antibodies titers = 157.2, P = 0.05). No SARS-CoV-2 virus was isolated in Vero E6 cells inoculated with nasopharyngeal swab samples from all patients 50 days PIS, and the cytopathic effect was lacking. But one sample was positive for SARS-CoV-2 nucleic acid test in cell supernatants after two passages. Genome sequencing revealed that only three synonymous variants were identified in spike protein coding regions. In conclusion, decreased IFN-γ production by NK cells and low neutralizing antibodies might favor SARS-CoV-2 long-term existence. Further, low viral load and weak viral pathogenicity were observed in COVID-19 patients with long-term SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , COVID-19/transmission , SARS-CoV-2/immunology , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/physiopathology , Female , Humans , Immunoglobulin G/immunology , Interferon-gamma/immunology , Killer Cells, Natural/immunology , Male , Middle Aged , SARS-CoV-2/pathogenicity , Viral Load , Virulence
9.
Front Endocrinol (Lausanne) ; 11: 571037, 2020.
Article in English | MEDLINE | ID: covidwho-868936

ABSTRACT

Background: Diabetes has been found to increase severity and mortality under the current pandemic of coronavirus disease of 2019 (COVID-19). Up to date, the clinical characteristics of diabetes patients with COVID-19 and the risk factors for poor clinical outcomes are not clearly understood. Methods: The study was retrospectively carried out on enrolled diabetes patients with laboratory confirmed COVID-19 infection from a designated medical center for COVID-19 from January 25th, 2020 to February 14th, 2020 in Wuhan, China. The medical record was collected and reviewed. Univariate and multivariate analyses were performed to assess the risk factors associated with the severe events which were defined as a composite endpoint of admission to intensive care unit, the use of mechanical ventilation, or death. Results: A total of 52 diabetes patients with COVID-19 were finally included in the study. 21 (40.4%) patients had developed severe events in 27.50 (IQR 12.25-35.75) days follow-up, 15 (28.8%) patients experienced life-threatening complications and 8 patients died with a recorded mortality rate of 15.4%. Only 13 patients (41.9%) were in optimal glycemic control with HbA1c value of <7.0%. In addition to general clinical characteristics of COVID-19, the severe events diabetes patients showed higher counts of white blood cells and neutrophil, lower lymphocytes (40, 76.9%), high levels of hs-CRP, erythrocyte sedimentation rate (ESR) and procalcitonin (PCT) as compared to the non-severe diabetes patients. Mild higher level of cardiac troponin I (cTNI) (32.0 pg/ml; IQR 16.80-55.00) and D-dimer (1.70 µg/L, IQR 0.70-2.40) were found in diabetes patients with severe events as compared to the non-severe patients (cTNI:20.00 pg/ml, IQR5.38-30.00, p = 0.019; D-dimer: 0.70 µg/L, IQR 0.30-2.40, p = 0.037). After adjusting age and sex, increased level of cTNI was found to significantly associate with the incidence of severe events (HR: 1.007; 95% CI: 1.000-1.013; p = 0.048), Furthermore, using of α-glucosidase inhibitors was found to be the potential protectant for severe events (HR: 0.227; 95% CI: 0.057-0.904; p = 0.035). Conclusion: Diabetes patients with COVID-19 showed poor clinical outcomes. Vigorous monitoring of cTNI should be recommended for the diabetes patients with COVID-19. Usage of α-glucosidase inhibitors could be a potential protectant for the diabetes patients with COVID-19.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/mortality , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Pneumonia, Viral/mortality , Severity of Illness Index , Aged , Blood Glucose/analysis , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Humans , Incidence , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Prognosis , Retrospective Studies , Risk Factors , SARS-CoV-2 , Survival Rate
10.
Front Med (Lausanne) ; 7: 334, 2020.
Article in English | MEDLINE | ID: covidwho-634316

ABSTRACT

Objective: Detection of SARS-CoV-2 by oropharyngeal swabs (OPS) and nasopharyngeal swabs (NPS) is an essential method for coronavirus disease 2019 (COVID-19) management. It is not clear how detection rate, sensitivity, and the risk of exposure for medical providers differ in two sampling methods. Methods: In this prospective study, 120 paired NPS and OPS specimens were collected from 120 inpatients with confirmed COVID-19. SARS-CoV-2 nucleic acid in swabs were detected by real-time RT-PCR. The SARS-CoV-2 detection rate, sensitivity, and viral load were analyzed with regards NPS and OPS. Sampling discomfort reported by patients was evaluated. Results: The SARS-CoV-2 detection rate was significantly higher for NPS [46.7% (56/120)] than OPS [10.0% (12/120)] (P < 0.001). The sensitivity of NPS was also significantly higher than that of OPS (P < 0.001). At the time of sampling, the time of detectable SARS-CoV-2 had a longer median duration (25.0 vs. 20.5 days, respectively) and a longer maximum duration (41 vs. 39 days, respectively) in NPS than OPS. The mean cycle threshold (Ct) value of NPS (37.8, 95% CI: 37.0-38.6) was significantly lower than that of OPS (39.4, 95% CI: 38.9-39.8) by 1.6 (95% CI 1.0-2.2, P < 0.001), indicating that the SARS-CoV-2 load was significantly higher in NPS specimens than OPS. Patient discomfort was low in both sampling methods. During NPS sampling, patients were significantly less likely to have nausea and vomit. Conclusions: NPS had significantly higher SARS-CoV-2 detection rate, sensitivity, and viral load than OPS. NPS could reduce droplets production during swabs. NPS should be recommended for diagnosing COVID-19 and monitoring SARS-CoV-2 load. Chinese Clinical Trial Registry, number: ChiCTR2000029883.

11.
J Med Virol ; 92(11): 2684-2692, 2020 11.
Article in English | MEDLINE | ID: covidwho-526739

ABSTRACT

BACKGROUND: The rapid outbreak of coronavirus disease 2019 (COVID-19) has turned into a public health emergency of international concern. Epidemiological research has shown that sex is associated with the severity of COVID-19, but the underlying mechanism of sex predisposition remains poorly understood. We aim to study the gendered differences in inflammation reaction, and the association with severity and mortality of COVID-19. METHODS: In this retrospective study, we enrolled 548 COVID-19 inpatients from Tongji Hospital from 26 January to 5 February 2020, and followed up to 3 March 2020. Epidemiological, demographic and clinical features, and inflammatory indexes were collected and compared between males and females. The Cox proportional hazard regression model was applied to identify the gendered effect on mortality of COVID-19 after adjusting for age, comorbidity, and smoking history. The multiple linear regression method was used to explore the influence of sex on inflammation reaction. RESULTS: Males had higher mortality than females did (22.2% vs 10.4%), with an hazard ratio of 1.923 (95% confidence interval, 1.181-3.130); elder age and comorbidity were significantly associated with decease of COVID-19 patients. Excess inflammation reaction was related to severity of COVID-19. Male patients had greater inflammation reaction, with higher levels of interleukin 10, tumor necrosis factor-α, lactose dehydrogenase, ferritin, and hyper-sensitive C-reactive protein, but a lower lymphocyte count than females adjusted by age and comorbidity. CONCLUSIONS: Sex, age, and comorbidity are critical risk factors for mortality of COVID-19. Excess innate immunity and proinflammation activity, and deficiency in adaptive immunity response promote males, especially elder males, to develop a cytokine storm, causing potential acute respiratory distressed syndrome, multiple organ failure and decease.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Cytokine Release Syndrome/immunology , Inflammation/virology , Adolescent , Adult , Age Factors , Aged , Child , Child, Preschool , China/epidemiology , Comorbidity , Cytokine Release Syndrome/virology , Female , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Inflammation/epidemiology , Male , Middle Aged , Proportional Hazards Models , Retrospective Studies , Risk Factors , Severity of Illness Index , Sex Factors , Young Adult
12.
J Allergy Clin Immunol ; 146(1): 110-118, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-46911

ABSTRACT

BACKGROUND: In December 2019, the coronavirus disease 2019 (COVID-19) outbreak occurred in Wuhan. Data on the clinical characteristics and outcomes of patients with severe COVID-19 are limited. OBJECTIVE: We sought to evaluate the severity on admission, complications, treatment, and outcomes of patients with COVID-19. METHODS: Patients with COVID-19 admitted to Tongji Hospital from January 26, 2020, to February 5, 2020, were retrospectively enrolled and followed-up until March 3, 2020. Potential risk factors for severe COVID-19 were analyzed by a multivariable binary logistic model. Cox proportional hazard regression model was used for survival analysis in severe patients. RESULTS: We identified 269 (49.1%) of 548 patients as severe cases on admission. Older age, underlying hypertension, high cytokine levels (IL-2R, IL-6, IL-10, and TNF-α), and high lactate dehydrogenase level were significantly associated with severe COVID-19 on admission. The prevalence of asthma in patients with COVID-19 was 0.9%, markedly lower than that in the adult population of Wuhan. The estimated mortality was 1.1% in nonsevere patients and 32.5% in severe cases during the average 32 days of follow-up period. Survival analysis revealed that male sex, older age, leukocytosis, high lactate dehydrogenase level, cardiac injury, hyperglycemia, and high-dose corticosteroid use were associated with death in patients with severe COVID-19. CONCLUSIONS: Patients with older age, hypertension, and high lactate dehydrogenase level need careful observation and early intervention to prevent the potential development of severe COVID-19. Severe male patients with heart injury, hyperglycemia, and high-dose corticosteroid use may have a high risk of death.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/mortality , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , China/epidemiology , Cohort Studies , Comorbidity , Female , Humans , Inpatients/statistics & numerical data , Male , Middle Aged , Pandemics , Risk Factors , SARS-CoV-2 , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL